If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x=155
We move all terms to the left:
x^2-10x-(155)=0
a = 1; b = -10; c = -155;
Δ = b2-4ac
Δ = -102-4·1·(-155)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-12\sqrt{5}}{2*1}=\frac{10-12\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+12\sqrt{5}}{2*1}=\frac{10+12\sqrt{5}}{2} $
| (3+2p)=0 | | 10x+28=5x+163 | | 230=-v+130 | | 4=t(4-t) | | h-6=-2 | | 3x+4=-x-8 | | 90+16+2y=180 | | 90+16+4x=180 | | 5x=2+7x+10 | | 15x+4=8x-9 | | 4(x-1/3)=28 | | 7/9x-4/9x=1/4+5/12 | | x3(x2-5)=-4x | | 8n(n+1)=1 | | 8n(n+1)=0 | | 1/3x+x=60 | | 3(b+4)=12 | | 2x+1/8-x-1/3=5^24 | | 4(2x+3)-2(5-2x)=8 | | 97+710-143=4x | | 2(16-2x+x)=100 | | 6-6x=4x-1 | | -6(x-8)-2(x-1)=-x-2x | | -30=35j+25 | | a➗3+8=15 | | 4x^2+5/3x-1=0 | | 1^2(x-1)-1^6(x+1)=0 | | n-12.9÷6.1=-0.377 | | x+2/7=3x+6/5 | | 7-6g-7g+8(9-g)=21g | | 2(3x-1)-3(x+4)=1 | | 4+5v=-11 |